Microcontroller Based Inductance Capacitance Meter
 EM TESTED
 EM TESTED

MUDIT AGARWAL

This is the Inductance / Capacitance Meters circuit. One can easily build this LC Meter measure inductances starting from 1 mH to $100 \mathrm{mH}, 1 \mu \mathrm{H}$ to $1000 \mu \mathrm{H}, 10 \mathrm{nH}$ to 1000 nH and capacitance from 0.1 pF to $0.9 \mu \mathrm{~F}$. This inductance capacitance meter has Zero out switch that will reset the initial inductance capacitance, making sure that the final readings of the LC Meter are as accurate as possible. Further this Inductance Capacitance Meter circuit uses an auto ranging system, to come over the headache to select ranges manually. The resonance frequency of LC can be determined by using the frequency formula given below.

$$
\mathrm{f}_{\mathrm{r}}=1 /(2 \pi \sqrt{ } \mathrm{LC})
$$

Note that there are three variables that we can work with; fr, L and C (fr represents a frequency, L inductance and C capacitance). If we know the values of the two variables we may calculate the value of the third variable. For example if we want to determine the value of an unknown inductor with X inductance. We plug X inductance into the formula and we also use value of a known capacitor. Using this data we can calculate the frequency. Once we know the frequency we can use the power of the algebra and rewrite the above formula to solve for L (inductance). This time we will use the calculated frequency and a value of a known capacitor to calculate the inductance. We just calculated the value of unknown inductor, and we may use the same technique to solve for the unknown capacitance and even frequency.
The LC Meter uses a LM3 11 IC that functions as a frequency generator and this is exactly what we need. If we want to calculate the value of an unknown inductor we use a known1000pF capacitor and the value of an unknown inductor. LM311 will generate a frequency that we can measure with a frequency meter. Once we have this information we can use the frequency formula to calculate the inductance. The same thing can be
done for calculating the value of a unknown capacitor. This time we don't know the value a capacitor so instead we use the value of a known inductor to calculate the frequency. Once we have that information we apply the formula to determine the capacitance.
All this sounds great, however if we want to determine the value of a lot of inductors / capacitors then this may become a very time consuming process. This circuit uses PIC16F84A microcontroller from microchip. PIC16F84A is like a small computer that can execute HEX programs that are written using an assembly language. PIC16F84A is a very flexible microcontroller. PIC16F84A IC requires very minimal number of external components like 4 MHz crystal / resonator and few resistors depending on what project we are building. Before we can use PIC16F84A microchip we have to program it with a HEX code which has to be sent from the computer. In the next step we use the frequency generated by LM31 1 IC and pass it

Pins	Symbol	Function
1	Vee	Ground
2	Vdd	+5V
3	Vo	Contrast
4	RS	Register Select
5	RW	Read Write
6	En	Enable Signal
7	D0	Data Bit 0
8	D1	Data Bit 1
9	D2	Data Bit 2
10	D3	Data Bit 3
11	D4	Data Bit 4
12	D5	Data Bit 5
13	D6	Data Bit 6
14	D7	Data Bit 7
15	VA	Backlight +5V
16	VK	Backlight GND

Table 1.

CONSTRUCTION

Fig. 1 : Circuit Diagram of Microcontroller Based Inductance Capacitance Meter
on to PIC1 6F84A's PIN 17. We designate this pin as an input, as well as all other pins that are directly connected to switches and jumpers. User can use these inputs to tell the microchip to execute
specified set of instructions or perform calculations. Once the microchip will calculate the unknown inductance or capacitance it will use PINs that are designated as outputs and pass the results on to the

16 character LCD display. Most of the character LCD displays have 14 or 16 PINs. LCD with 14 pins donot have backlight. The LCD pins function is shown in table 1.

Software

list \square include \qquad config pwrte on \&	$\begin{aligned} & =\text { picl 6f84a } \\ & \text { pl6f84a.inc } \\ & \text { _hs_osc \& _wdt_off } \end{aligned}$
c10m equ	$h^{\prime} 0 c^{\prime}$
c01m equ	h'Od'
clos equ	h'0e'
c01s equ	h'Of'
Icd7_0 equ	$\mathrm{b}^{\prime} 00110011$
Icd7_1 equ	$\mathrm{b}^{\prime} 00110010$
Icd7 2 equ	$\mathrm{b}^{\prime} 00111000$
lcd7_3 equ	$\mathrm{b}^{\prime} 00001110$
lcd7_4 equ	$\mathrm{b}^{\prime} 00000110^{\prime}$
lcd7-5 equ	$\mathrm{b}^{\prime} 00001100$
lcd7_6 equ	b'00100111'
Icd7_7 equ	$\mathrm{b}^{\prime} 00000001{ }^{\prime}$
lcd7 8 equ	$\mathrm{b}^{\prime} 00100111$
lcd7_9 equ	$\mathrm{b}^{\prime} 10000000$
$1 \mathrm{ld70}$ equ	h'10'
Icd71 equ	h'11
1 ld 72 equ	h'12'
1 ld 73 equ	$h^{\prime} 13{ }^{\prime}$
Icd74 equ	h'14'
1 ld 75 equ	h'15'
Icd76 equ	h'16'
$1 \mathrm{ld77}$ equ	h'17'
$1 \mathrm{cd78}$ equ	h'18'

Fig.2: Component Layout o Microcontroller Based Inductance Capacitance Meter.

COMPONENT LIST

SEMICONDUCTOR DEVICES	
IC1	7805
IC2	PIC16f84A
Ic3	LM311
D1-D4	1N4007

CAPACITORS	
C1	$1000 \mathrm{uf} / 25 \mathrm{~V}$
C2,C3,C10	0.1 uf
C8,C9	22 pf
C4	100 pf
C5	1 nf
C6,C7	10 uf
Cknown	1000 pf

lcd79 equ	$h^{\prime} 19{ }^{\prime}$
tm_cnt equ	$h^{\prime} 1 a^{\prime}$
time_f equ	$h^{\prime} 1 b^{\prime}$
Ht_in equ	$h^{\prime} 1 c^{\prime}$
w_save equ	$h^{\prime} 1 d^{\prime}$
s_save equ	h'le'
cnt500u equ	$h^{\prime} 7 f^{\prime}$
cntlm equ	$h^{\prime} 20^{\prime}$
ra0 equ	0
ral equ	1
ra2 equ	2
ra3 equ	3
ra4 equ	4
rb6 equ	6
org 0	
goto init	
org 4	
goto int	
org 5	
init	
bsf status,r	rp0
movlw b'OOO	010000^{\prime}
movwf trisa	
movlw b'0000	000111^{1}
movwf optio	on_reg
bcf status,r	rp ${ }^{\text {0 }}$

CONSTRUCTION

bsf status,rp0
movlw h'ff' movwf trisb bcf status,rp0 bcf porta,ra0 bcf porta,ral bcf porta,ra2 \#ifdef_debug movlw h'fe' \#else call $\dagger 1 \mathrm{~m}$ movf portb,w \#endif xorlw h'ff' andlw h'Of' movwf cl0m bsf porta,ra0 \#ifdef_debug movlw h'ff' \#else call $\dagger 1 \mathrm{~m}$ movf portb,w \#endif xorlw h'ff' andlw h'Of' movwf c01m call led_cont movf c10m,w btfss status,z goto sw_check movf c01m,w btfsc status,z goto stand_by sw_check: bsf status,rp0

Fig. 3 : PCB Layout of Microcontroller Based Inductance Capacitance Meter.
bsf trisb,rb6
movlw b'00001000'
movwf porta
movlw Icd7_0
movwf $\operatorname{lcd} 7 \overline{0}$
movlw Icd7_1
movwf Icd7 $\overline{1}$
movlw Icd7_2
movwf Icd7 $\overline{2}$
movlw Icd7_3
movwf $\operatorname{lcd} 7 \overline{3}$
movlw Icd7_4
movwf lcd74
movlw Icd7 5
movwf $\operatorname{lcd} 7 \overline{5}$
movlw Icd7_6
movwf lcd7 $\overline{6}$
movlw Icd7_7
movwf Icd77
movlw Icd7_8
movwf Icd7 $\overline{8}$
movlw Icd7_9
movwf Icd7 $\overline{9}$
clif cl0s
clif c01s
bsf time_f,0
stand_by:
b bcf porta,ra0
bsf porta,ral
bcf porta,ra2
\#ifndef_debug
call $\dagger 1 \mathrm{~m}$
btfsc portb,rb6
goto stand_by
\#endif
Start:
bcf porta,ra3
\#ifdef_debug movlw d'255'
\#else
movlw d'43'
\#endif
movwf tmr0
\#ifdef_debug
movlw d'2'
\#else
movlw d'46'
\#endif
movwf tm_cnt
movlw h'aO'
movwf intcon
loop:
call led_cont
movf time f, w
bffsc status,z
goto time_out
\#ifndef_dē̄ug
btfsc porta,ra4
\#endif
goto loop
time_out
clif intcon
goto init
bsf status,rp0
clif trisb
bcf status,rp0
bcf porta,ra0
bcf porta,ral
bsf porta,ra2
movf c10m,w
movwf HI_in
call HI - $7 \overline{\mathrm{I}} \mathrm{cd}$
bsf porta,ra0
Movf c01m,w
movwf Hl in
call HI_7lcd
bcf porta,ra0
bsf porta,ral
movf c10s,w
movwf HI_in
call H_{2} _7̄̄cd
bsf porta,ra0
movf c01s,w
movwf HI_in
call H _ $7 \overline{\mathrm{I}} \mathrm{cd}$
return
H_7lcd
movlw Icd70
addwf HI_in,w
movwf fsr
movf indf,w
movwf portb
\#ifndef_debug
call $\dagger 1 \mathrm{~m}$
\#endif
return
t1m movlw 2
movwf cntlm
tmllpl movlw d'249
movwf cnt500u
tmilp2 nop
nop
decfsz cnt500u,f
goto tmllp2
decfsz cntlm,f
goto $\mathrm{tml} \mid \mathrm{pl}$
return
int:
goto tmllp2
decfsz cntlm,f
goto tm 1 lp 1
return
int:
movwf w_save
movf status, w
morwf s_save
bcf status,rp0
bffsc intcon, 10 if
goto timer_int int_end
movf s_save,w
movwf status
swapf w_save,f
swapf w_save,w
reffie timer_int:
bcf intcon, $\mathrm{-}$ Oif
\#ifdef_debug movlw ${ }^{-}$d'255' \#else
movlw d'43'
movwf tmr0
decfsz tm_cnt,f goto int_end \#ifdef_debug
movlw d'2' \#else
movlw d'46' \#endif
movwf tm_cnt
decfsz $\mathrm{CO} \mathrm{l}^{-}$s,w
goto countdown
movf cl0s,w
bifss status,z goto countdown movf c01m,w
biffs status,z
goto countdown
movf cl0m,w
bffss status,z
goto countdown
time_outl:
clif time_f goto int_end movf c01s,w bffss status,z goto cd_c01s movlw 9 movwf c01s movf c10s,w bffss status,z goto cd_cl0s movlw 5 movwf cl0s movf c01m,w bffss status,z goto cd_c01m movlw 9^{-} movwf c01m movf cl0m,w bffss status,z goto cd_cl0m goto time_outl cd_c01s:
decf c01s,f goto int_end cd_c10s: decf c10s,f goto int_end cd_c01m: decf c01m,f goto int_end cd_cl0m: decf c10m,f
goto int_end End

